一颗在黑洞边游走的恒星:新发现揭示了宇宙中最极端的环境之一
一组物理学家开发了一个模型,描绘了一颗恒星围绕超大质量黑洞的意外轨道,揭示了对宇宙中最极端环境之一的新见解。在数百万光年外的一个遥远的星系中,一颗恒星正被一个超大质量黑洞的巨大引力撕碎。恒星的毁灭导致一股碎片落回黑洞,形成一个吸积盘–一个围绕黑洞旋转的明亮而热的物质盘。
恒星被超大质量黑洞摧毁并激发出明亮的吸积焰的过程被称为潮汐破坏事件(TDE)。这些事件被认为在任何给定的星系中大约每10000到100000年发生一次。
吸积事件的亮度在短时间内(几个月到几年)超过了整个星系(即比我们的太阳亮几十亿倍),使天体物理学家能够从宇宙学距离上研究超大质量黑洞(SMBHs),为了解其他静止或休眠星系的中心区域提供一个窗口。通过探测这些”强引力”事件,爱因斯坦的广义相对论对於确定物质的行为方式至关重要,TDEs产生了关於宇宙中最极端环境之一的信息:黑洞的事件视界–不归点。
TDEs通常是”转瞬即逝”的,因为SMBH的极端引力场摧毁了恒星,这意味着SMBH在增殖耀斑之後又消逝在黑暗中。然而,在某些情况下,恒星的高密度核心可以在与SMBH的引力作用下存活下来,使其能够围绕黑洞运行不止一次。研究人员称这是重复的部分TDE。
这幅插图描绘了一颗恒星(在前景)在”潮汐破坏事件”中被超大质量黑洞(在背景)吸进去时经历的碎片化现象。资料来源:ESOM Kornmesser
一个物理学家团队,包括主要作者欧洲南方天文台研究员托马斯-韦弗斯,以及共同作者雪城大学物理学助理教授埃里克-考夫林和麻省理工学院卡夫利天体物理学和空间研究所的研究科学家Dheeraj R.”DJ”Pasham,提出了一个重复的部分TDE模型。
他们的研究结果发表在《天体物理学杂志》上,描述了SMBH对恒星的捕获,每次恒星接近黑洞时对物质的剥离,以及物质被剥离和再次进入黑洞之间的延迟。该小组的工作是首次开发并使用一个详细的重复部分TDE模型来解释观测结果,对遥远星系中恒星的轨道特性进行预测,并理解部分潮汐破坏过程。
该小组正在研究一个被称为AT2018fyk(AT代表”天体物理瞬态”)的TDE。这颗恒星通过一个被称为”希尔斯俘获”的交换过程被一个SMBH俘获,在这个过程中,这颗恒星原本是一个双星系统的一部分(两颗恒星在相互的引力作用下相互绕行),但被黑洞的引力场撕裂了。另一颗(未被俘获的)恒星以大约1000公里/秒的速度从星系中心被抛出,这就是所谓的超高速星。
一旦与SMBH结合,为AT2018fyk的发射提供动力的恒星在每次经过它与黑洞的最接近点时,都会被反覆剥离其外层包膜。被剥离的恒星外层形成了明亮的吸积盘,研究人员可以使用X射线和紫外线/光学望远镜对其进行研究,以观察来自遥远星系的光线。
根据Wevers的说法,有机会研究部分TDE使人们对超大质量黑洞的存在和星系中心的恒星的轨道动力学有了前所未有的了解。
他说:”直到现在,我们的假设是,当我们看到一颗恒星和一个超大质量黑洞亲密接触的後果时,其结果对恒星来说是致命的,也就是说,恒星被完全摧毁。但是与我们所知的所有其他TDEs相反,当我们在几年後将望远镜再次指向同一地点时,我们发现它又重新变亮了。这使我们提出,与其说是致命的,不如说是这颗恒星的一部分在最初的遭遇中幸存下来,并回到同一地点再次被剥离物质,解释了重新变亮的阶段。”
AT2018fyk在2018年首次被探测到,最初被认为是一个普通的TDE。麻省理工学院物理学家Dheeraj R. Pasham解释说,在大约600天的时间里,该源在X射线中保持明亮,但随後突然变暗,无法检测到–这是恒星残余核心返回黑洞的结果。
Pasham说:”当核心回到黑洞时,它基本上通过引力将所有的气体从黑洞中偷走,结果是没有物质可以增加,因此系统变黑。”
目前还不清楚是什麽导致了AT2018fyk光度的急剧下降,因为TDEs的发射通常是平滑和逐渐衰减的,而不是突然的。但是在下降後的600天左右,这个源头又被发现是X射线明亮的。这使得研究人员提出,这颗恒星在第一次与SMBH的亲密接触中幸存下来,并处於围绕黑洞的轨道上。
利用详细的模型,研究小组的发现表明,这颗恒星围绕黑洞的轨道周期大约是1200天,从恒星上脱落的物质需要大约600天才能返回黑洞并开始增殖。他们的模型也限制了被捕获的恒星的大小,他们认为它大约是太阳的大小。至於最初的双星,研究小组认为,在被黑洞撕裂之前,这两颗恒星离得非常近,很可能每隔几天就围绕对方运行。
那麽,一颗恒星如何能在与死亡擦肩而过的过程中幸存下来呢?这一切都归结为一个距离和轨迹的问题。如果恒星与黑洞正面相撞并通过事件视界–逃离黑洞所需的速度超过光速的阈值–恒星将被黑洞吞噬。如果这颗恒星非常接近黑洞并越过了所谓的”潮汐半径”–即黑洞的潮汐力强於保持恒星的引力–它就会被摧毁。在他们提出的模型中,恒星的轨道达到了一个最接近的点,正好在潮汐半径之外,但并没有完全越过它:恒星表面的一些物质被黑洞剥离,但其中心的物质却保持完整。
恒星绕着SMBH运行的过程是如何发生的,或者说是否会发生多次反覆穿越,这是一个理论问题,研究小组计划用未来的模拟进行研究。雪城大学物理学家Eric Coughlin解释说,他们估计每次经过黑洞时,恒星的质量损失在1%到10%之间,范围大是因为对TDE的发射进行建模的不确定性。
“如果质量损失只有1%的水平,那麽我们预计这颗恒星可以在更多的相遇中存活下来,而如果它接近10%,这颗恒星可能已经被摧毁了,”考夫林指出。
该小组将在未来几年里继续关注天空,以测试他们的预测。根据他们的模型,他们预测该源将在2023年8月左右突然消失,并在2025年新剥离的物质增加到黑洞上时再次变亮。
研究小组表示,他们的研究为跟踪和监测过去已经探测到的後续源提供了一条新的途径。这项工作还为来自外部星系中心的重复耀斑的起源提出了一个新的范式。
“在未来,很可能会有更多的系统被观测出晚期耀斑,特别是现在这个项目提出了通过动态交换过程捕获恒星以及随後的重复部分潮汐破坏的理论图景,”Coughlin说。”我们希望这个模型可以用来推断遥远的超大质量黑洞的属性,并获得对其”人口统计学”的理解,即在一个特定的质量范围内的黑洞数量,否则很难直接实现。”
该团队表示,该模型还对潮汐破坏过程做出了几个可测试的预测,随着对AT2018fyk这样的系统进行更多的观测,它应该能够深入了解部分潮汐破坏事件的物理学和超大质量黑洞周围的极端环境。
“这项研究概述了可能预测外部星系中超大质量黑洞的下一个宵禁时间的方法,”Pasham说。”如果你想一想,我们地球人可以将我们的望远镜对准数百万光年外的黑洞,以了解它们如何进食和生长,这是相当了不起的。”
喜欢这篇文章吗?立刻分享出去让更多人知道吧!
本站内容充实丰富,博大精深,小编精选每日热门资讯,随时更新,点击「抢先收到最新资讯」浏览吧!
请您继续阅读更多来自 cnBeta 的精彩文章:
※科学家警告:太少的钠摄入反而会对心力衰竭患者造成致命伤害
※配件制造商在正式发布前开始销售重新设计的第10代iPad的保护壳